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Abstract. Present capabilities of the NASA CARES�Life code include probabifistic life prediction of

ceramic components subjected to fast fracture, slow crack growth (stress corrosion), and cyclic fatigue

failure modes. Currently, this code has the capability to compute the time-dependent reliability of

ceramic structures subjected to simple time-dependent loading. For example, in slow crack growth

(SCG) type failure conditions CARES�Life can handle the cases of sustained and linearly increasing

time-dependent loads, while for cyclic fatigue applications various types of repetitive constant amplitude

loads can be accounted for. In real applications applied loads are rarely that simple, but rather vary with

time in more complex ways such as, for example, engine start up, shut down, and dynamic and

vibrational loads. In addition, when a given component is subjected to transient environmental and or

thermal conditions, the material properties also vary with time. The objective of this paper is to

demonstrate a methodology capable of predicting the time-dependent reliability of components

subjected to transient thermomechanical loads that takes into account the change in material response

with time. In this paper, the dominant delayed failure mechanism is assumed to be SCG. This capability

has been added to the NASA CARES�Life (Ceramic Analysis and Reliability Evaluation of

Structures�Life) code, which has also been modified to have the ability of interfacing with commercially

available FEA codes executed for transient load histories. An example involving a ceramic exhaust valve

subjected to combustion cycle loads is presented to demonstrate the viability of this methodology and

the CARES�Life program.



Introduction

The unique properties of advanced structural ceramics present them as strong candidate materials for

many high temperature applications including gasoline, diesel, gas turbine engine components, and

aerospace and terrestrial propulsion systems. Attractive properties such as light weight, high strength at

elevated temperatures, high stiffness, and corrosion resistance are allowing ceramics to supplant alloys

in these demanding applications. The result is lower engine emissions, higher fuel efficiency, and more

optimum design.

As improved ceramics emerge for structural applications, the design engineer must be cognizant that

the ability of ceramic structures to sustain loads degrades over time due to a variety of effects such as

SCG, cyclic fatigue, creep, and oxidation. SCG usually initiates at a preexisting flaw and continues until

a critical crack length is reached causing catastrophic failure [1]. Crack extension due to SCG may

occur due to interaction between the environment and high stress fields near the crack tip. Cyclic fatigue

failure occurs due to repetitive loading that causes premature mechanically assisted failure. In ceramics,

this failure takes place due to crack propagation of inherent flaws. Creep rupture, on the other hand,

occurs because of bulk damage in the material in the form of void nucleation and coalescence that

eventually leads to macrocracks which can then propagate to failure [2]. Hence, it can be seen that in

light of the potential use of ceramics in structural applications, life prediction methodologies capable of

optimizing material usage and requisite design tools are needed.
Because of the combination of brittleness and the random nature of inherent flaws in ceramic

materials, probabilistic analysis and design methodologies are utilized to predict their lifetime. Several

integrated design codes such as CARES�Life [3], CERAMIC/ERICA [4], and STAU [5] are available

and have been demonstrated to be successful in predicting the failure probability for ceramic

components subjected to fast fracture and SCG.

Prior to this work the SCG and cyclic fatigue theories in CARES�Life were limited to static loading

in the case of SCG, and simple constant-amplitude loading in the cyclic fatigue case. In the

CERAMIC/ERICA code, the Weibull modulus is assumed to be constant and thus independent of

temperature and environment. However, the Weibull modulus for some ceramic materials such as

NT551 [6] and alumina [7] has been found to potentially exhibit temperature and stress rate

dependence. Prior to this work the CARES/Life code assumed that the material response (parameters)

remained constant with time under sustained and fatigue type loading. This means that CARES/Life did

not take into account the effects of thermal and environmental changes on the life of a loaded

component, although CARES/Life did allow the Weibull modulus to vary with temperature and

environment. However, until the methodology described in this paper commenced, CARES/Life

assumed the material response at a given location in the component to be constant with time. In

practical applications, the majority of applied loads vary with time such as in start up, shut down,

dynamic, and vibrational load cases. In addition multiple time varying loads can be applied concurrently.

Even if the majority of these applied loads remain static, it takes only one varying load to cause the

stress distribution throughout the structure to fluctuate with time.

Previous investigators [8-12] have tackled the issue of transient reliability, where SCG was

considered to be the dominant failure mode. Paluszny and Nichols [8] described a methodology to

compute the time-dependent reliability of ceramics in SCG failure mode but assumed the Weibull

modulus and SCG exponent to remain constant with time. Jakus and Ritter [9] developed a life

prediction Eq. in terms of probabilistic parameters for both applied stress and component strength. They

assumed that the applied stress varies according to a truncated Gaussian distribution while the strength

was modeled using the Weibull distribution. In their analysis, they also assumed the Weibull modulus



and the SCG exponent to remain constant with time. More recently Bruckner-Foit and Ziegler [10,11 ],

and Ziegler [12] developed time-dependent reliability formulation for three cases: no SCG, SCG

governed by a power law, and SCG governed by a power law with a threshold. In his transient reliability

formulation, Ziegler [12] allowed the SCG exponent to vary with time and assumed the Weibull

modulus to be constant. Ziegler's approach regarding transient SCG governed by a power law is based

on tracking the evolution of crack size as a function of time. The authors of this paper developed a

methodology of transient SCG governed by a power law based on an approach of using flaw strength

and maintaining compatibility of failure probability between discrete time steps. This methodology

allows for the introduction of a variable Weibull modulus as a function of time or temperature. Allowing

for a variable Weibull modulus is useful for materials that show R-curve behavior as a function of

temperature. In addition, in this paper it is shown how to perform reliability analysis for transient SCG

with varying material properties for repeated block loading - a topic not covered in reference [12].

The objective of this paper is to demonstrate this systematic methodology to predict the time-

dependent reliability of components subjected to multiple transient thermomechanical loads, taking into

account the change in material response with time. This methodology was added to the CARES/Life

code as well as the capability to perform this analysis using results generated from the ANSYS finite

element analysis program. An example involving a ceramic exhaust valve subjected to combustion cycle

loads is presented to demonstrate the viability of this methodology.

Theoretical Development

Transient Reliability With SCG. The derivations that follow will develop the time-dependent

probability of survival based on the mode I equivalent stress distribution due to thermomechanical

loading at time tr, transformed to its equivalent stress distribution at time t = 0. Investigations in the area

of mode I crack extension [13] have resulted in the following relationship

Kleq (W, t) = arm (W, t) Y (1)

where Y is a function of crack geometry, cyleqis the equivalent mode I far field stress normal to a crack,

a(t) is the crack length at time t, and W represents a location (x,y,z) within the body and the orientation

(_,13) of the crack. In some models, such as the Weibull and principle of independent action (PIA), u/

represents a location only. The Equations presented in this section are based on the Batdorf theory

[20,21]. For the Batdorf theory, W = (x,y,z,ot,13) for volume flaw analysis and W = (x,y,t_) for surface
flaw analysis.

The crack growth as a function of the equivalent mode I stress intensity factor can be expressed as

da(W,t) A(t) N(t)
dt - Kleq (q+', t) (2)

where A(t) and N(t) are time-dependent material constants that depend on the temperature and

environment. These constants are described as a function of time in Eq. 2 because in a transient loading

analysis the temperature and/or environment can vary with time causing these material constants to

change accordingly. From Eqs. 1 and 2 it can be shown that for a given time interval, during which the

material parameters are assumed constant, the equivalent transformed stress distribution ,_,,(_,)at the



beginningof that time interval t=ti is related to the degraded strength O'leq.f

time interval t=tr through the following Eq.:

I crleq (Hi, t)
O.ieq,t/(V) = fl_ N(t)

B(t)

1

dt+ OleqN(t)'2(H_, tf) ](Niti-2i

= Gleq(tF,tf) at the end of the

(3)

2 (4)

B(t) = A(t) y2 KtcN(,) -2 (N(t)- 2)

where t_eq,, -- o'leq(tP,t) is the stress distribution during the time interval from t_ to tr. The material

parameters A(t), N(t) and B(t), which can vary over the entire load history, are assumed to be constant

during that time interval. The exponent N is dimensionless and B has units stress z x time. The challenge

is to solve Eq. 3 for the effective stress distribution _eq,0(W) at time t = 0 where Cheq.O(W) is the

transformed critical equivalent stress distribution at t = 0. Note that Eq. 3 can be used to calculate

c_q,0(W) directly for the special case when the material parameters N and B are invariant (constant) over

the entire load history [14,15]. In this paper we show how to compute Gl_q.O(W) using Eq. 3 for the

general case when the material parameters vary with time.

The time-dependent reliability of a ceramic component can be computed assuming a crack density

distribution, which is a function of the critical effective stress distribution. For volume analysis, the

probability of survival, Psv (tO, based on the Batdorfmodel is [3]:

_[E v,, mV'
dVd_]

(5)

where k.v is the normalized Batdorf crack density coefficient for volume flaws, G_q,0(_) is the

transformed critical effective stress distribution at t=0 as given in Eq. 3, ¢Y0w is the Weibull scale

parameter at t=0 for volume flaws, mw is the Weibull modulus at t=0 for volume flaws, and d_ = sins

do_ d[3. _[_q,0 (_) is dependent on the appropriate fi'acture criterion, crack shape, and time tf. The term

k,v is used in the reliability equation for compatibility purposes. It insures that the multiaxial Batdorf

theory collapses to the basic uniaxial Weibull model.

It is apparent from Eq. 5 that the key to computing the transient reliability for a structural component

is the proper computation of the transformed critical effective stress, (yJeq,0(_), and the knowledge of

how the fast fracture and fatigue material parameters (Gov, my, B_, NO vary with time. What follows is a

methodology for evaluating cy_q,0(_) given a fluctuating stress history and material properties.

For a stressed component, the probability of survival is calculated using Eq. 5. The finite element

method (FEA) enables discretization of the component into incremental volume elements, V_ corre-

sponding to the ith element. The stress state, temperature, and environment for each element are assumed

uniform. In that case, the volume integral is replaced with a volume summation, and Eq. 5 takes the

following form:



I]Psv(tf) = _^v-_ 4-_- -- d_= ( L _ovt 3 i
(6)

For enhanced numerical accuracy, CARES/Life evaluates the failure probability at the Gaussian

integration points of the element. Using the element integration points subdivides the element into

subelements. Hence, V_ in Eq. 6 corresponds to the subelement volume, and n is the total number of
subelements.

To take into account the time dependence of loading and material response, we discretize the stress

history for each element i into short time steps, Atj, during which the stress and material parameters are

assumed to remain constant. For a given time step j, the applied equivalent stress in a given element i is

given by O_eqa,the temperature Tj, the scale parameter Oovj, the Weibull modulus mvj, the fatigue constant

Bvj, and the fatigue exponent Nvj. Note that in Eqs. 5 and 6, the Weibull parameters corresponding to

the first load step (initial conditions at t=0), Oo_1and mvt, are used to compute the reliability. This is

done to be consistent since the stress history was transformed to the initial conditions at t=0.

The expression for the transformed critical equivalent stress distribution at t = 0 (inert strength),

oleq,0(W), will be derived next for the first three time steps of a general fluctuating stress history that a

given element i experiences. This is done in order to develop a pattern for the inert strength expression

that can then be generalized and coded for any time step j.

Time step 1: During this time step At_ and for a given element i, the applied stress is termed cr_eq._,

the temperature Tt, the scale parameter trove, the Weibull modulus m_, the fatigue constant Bye, and the

fatigue exponent N_I. The inert strength expression, (_r_eq.0),for the i th element corresponding to the first

time step is obtained directly from Eq. 3. In that equation the stress history integral existing in the first

term within the brackets is evaluated by setting the stress history O_q(W,t) equal to the constant applied

equivalent stress during time step 1, _eq.j, and the failure time tf = Ab. This means that the integral

term in Eq. 3 becomes equal to o_SAt , . Hence, the inert strength at t=0, (o_eq.0)+for element i is given by:

1

I 1,"v NV| Al I Nrt_2 (NvI'2)

= Vleq'l F Crleq,lf (7)
(O'Ieq,O)i Bv I

i

The second term in Eq. 7, O'leqjf, represents the remaining (degraded) strength at the end of time step 1.

Since we are interested in computing the failure probability at the end of time step 1, then we assume

that the element fails at the end of this time step. Hence, by setting the degraded strength term _eq._t

equal to the applied stress cr_q._ during this time step, we arrive at the probability of failure/survival

expression. Therefore, the inert strength expression at time t=0 for the ith element corresponding to a

constant loading for the duration of time step 1 becomes:

]i i-N-V,2)

,,'vN v I At
"-"leq,l '-'" I Nw-2

((Yleq'0)i = B-VI + O"leq'l
(8)



Substituting Eq. 8 into Eq. 6, we obtain the following reliability formula for the entire component at the
end of time step 1"

n

Psv (t l) = exp {- _ k-Bvil Vi
i=l 4n

Nvl Atl mvlleq,I

[ j [( O'leq'l ) Nv'-2 4- Nv,-2 "] Nv'-2 df]]i } (9)

O'°V1 (_oVI B v1

Time step 2: During this time step At2 and for a given element i, the applied stress is termed _eq.2,

the temperature T2, the scale parameter Cyov2,the Weibull modulus mv2, the fatigue constant By2, and the

fatigue exponent N_2. To carry on the reliability analysis to this time step, it is assumed that the initial

strength at the beginning of time step 2, (_eq,0)Z, is equal to the remaining strength at the end of time

step 1, cr_eq._r.This assumption is valid if the material response does not vary significantly from one step

to the next. However, in real applications changes in temperature and environment are the norm. For

such cases the remaining strength at the end of one time step does not equal the initial strength of the

subsequent time step. Since the crack size does not change from the end of one time step and the

beginning of the next one, we can circumvent this problem by computing an equivalent strength at the

beginning of a given time step using the remaining strength from the previous time step. This can be

done by equating the survival probabilities corresponding to these two cases. Performing the above task
results in:

(_leq ,0 )2
(Y0V2 (5" Ieq ,I f

O*oV I

mvi

mv2

mvl

= _0Bv2 -- (10)
(3" 0BV 1

Eq. (10) provides an expression for the initial strength of time step 2 (_req,0)2 as a function of the

remaining strength at the end of time step 1 , cr_eq,_f. Note that when the Wiebull parameters remain

constant Eq. 10 collapses to the basic case where the remaining strength at the end of a given time step

is equal to the initial strength of the subsequent step. Also, use of the normalized Batdorf crack density

coefficient, _,_ is essential to normalize the relationship to the uniaxial stress state. The term er0Bv

includes the effect of k,v and is used henceforth. This is how the methodology described in this paper

takes into account the transience in the Wiebull parameters throughout the load history.

The objective now is to obtain an expression for the inert strength at t=0 using the applied constant

stresses and material parameters during the first two time steps. This expression can then be substituted

back in the reliability Eq. 6 to compute the failure probability at the end of time step 2. This is done

through a series of equation manipulations to arrive at the desired goal. From Eq. 3 and for time step 2,

the degraded strength at the end of time step 2, c_j_q,2f and the initial strength at the beginning of time

step 2 (cr_q,O)2are related as such:



_Nv2 At 2

Nv2-2 (O- ieq,0 )2Nv2-2 °leq'2
(Y leq,2f = BV 2

(11)

Solving Eq. 7 for the degraded strength at the end of time step 1, O'leq,lf, in terms of the inert strength at

t=0, (t_eq.0)_, and substituting that term into Eq. 10 yields an expression for the initial strength at time

step 2, in terms of the inert strength at time t=0. Taking that expression for (O_eq,0)2and substituting it

into Eq. 11 results in a formula relating the inert strength at t=0 to the degraded strength at the end of

time step 2,, cr_eq,2f. In order to compute the probability of failure at the end of time step 2, we shall

assume that failure occurs when this degraded strength become equal to the applied stress during this

time step, 6t_q,2. Performing all these mathematical manipulations will ultimately yield the following

formulation for the inert strength at t=0 due to a load history made up of two time steps:

NV1-2 rr Nv2 At 2 mv2(Nvl-2) --Nvl At --!--
_']/"=leq,0_ i = [ (Y0BV1 , NV2-2 "leq,2 - (Nv2:2) °leq,I I[or leq,2 -I- )my, + ]iyv'-2 (12)

my2 (Nv,-2) By2 Bvl
mVl

O'0BV2

Eq. 12, in its current form, can lead to decreasing inert strength as time elapses. For example, if the

applied stress decreases monotonically with time while the material gets stronger, then Eq. 12 can result

in decreasing inert strength as time elapses. This means that when this time dependent inert strength is

substituted in Eq. 6, improved reliability can be predicted. This is obviously wrong since a structure's

reliability cannot increase with time. Hence, a systematic methodology is necessary to insure that the

reliability never increases with time.

The procedure proposed in this work to insure that the reliability never increases with time is based

on maximizing the fast fracture term, cr_q.2, in Eq. 12. In this maximization procedure the stress history

(all time steps) is transformed using the methodology of Eq. 10 in such a way that the material

properties for the entire history remain constant. The material properties for the last time step, k=2, are

used as the values to normalize the entire load history with respect to. In other words, for this two time

steps loading history, the material properties during time step 1 are transformed to those during time

step 2. Obviously the stress during time step 2 remains the same since the material properties during that

time step do not change. Hence, the entire load history has the same material properties as time step 2.

This transformation is done by computing an equivalent (transformed) stress during time step 1 c_q_,Z,

using the material properties of time step 2, that maintains the same probability of failure as the actual

applied stress and material properties of time step 1. Hence, The term rr_,q_.2 is the transformed stress

during time step 1 using the material properties of the last time step, which in this case is 2. This

transformation yields the following expression:

O"leql,2 = O'OBV2

mv i

O'leq,l ) mV2

O'OBVI .}

(13)

Now with the material properties uniform throughout the load history, the fast fracture term in Eq. 12 is

set equal to the maximum transformed stress, e_eq,2,Vma×,which is equal to the maximum of either cr_oqt,Z

or err,q.2. The second subscript in O_q.2.Vm,×indicates that the stresses during all time steps have been



transformedusingthe materialpropertiespresentduring the last time step2, while the last subscript
Tmaxindicatesthat themaximumstressduringall timestepswasselected.Thismaximizationprocedure
insuresthat both stressmagnitudesandmaterialpropertiesaretakeninto accountwhenmaximizingthe
fast fractureterm in theinert strengthformulation.

Substitutingthe maximumtransformedstressinto Eq. 12and subsequentlyEq. 12 into Eq. 6, we
obtainthefollowing reliabilityformulafor theentirecomponentat theendof timestep2:

n

Psg(t2) = exp{-_--' V-_-i[ J[ [(O'leq'2'Tmax) Nv2-2
i=l q]17 £1 O-OBV2

ml' 1

rrNv2 A/2 mv2(N['-1--2) rrNvI At I nvl-Z
" leq,I

'-'leq,2 ]-m_,/(Np2-2) + ]

Nv2-2 By 2 NvI-2 By IO'OBV2 O'OBV1

d_],}

(14)

Time step 3: During this time step At3 and for a given element i, the applied stress is termed o'leq,3,

the temperature T3, the scale parameter troy3, the Weibull modulus my3, the fatigue constant Bv3, and the

fatigue exponent N_3.

For time step 3, similar procedure to that performed for time step 2 yields the following expression

for the inert strength at t--0 for the i th element at the end of time step 3:

Nvl-2 Nv2-2 ,._-Nv3 At mJ'3(Nv2-2) Nv2 --" rn-w(-N*'_!S2_

(O'leq,O)i = [ cr°BVl [ cr°av2 tCrteq'3"Nv3-2 + L'leq'3_-u3 )mv-z(Nv'-3f2-) + Orleq'2LXl2 ]mrl(Nv2-2)
mt':2-(Nv1-2) ra!'3 (Nv2-2) Bi,3 By2

t3r mv I r'r mv2
OBV2 _'OBV3 (15)

,.-,- NvI At I _

_1 t_ leq,l'-_'l ]N,,t -2

Bvi

Using the same maximization procedure described during time step 2, we transform the stresses during

time steps 1 and 2 using the material properties of the last time step k=3. Obviously the stress during

time step 3 remains the same since the material properties during that time step do not change. Hence,

the transformed stresses during time steps 1 and 2 are given by the terms (_leql,3 and (Yleq2.3.NOW with the

material properties uniform throughout the load history, the fast fracture term in Eq. 15 is set equal to

the maximum transformed stress, Crleq,3,Vm_x,which is equal to the maximum of _leqt.3 , _eq2,3 or _eq,3.

The second subscript in Cr_oq,3.Vmaxindicates that all stresses have been transformed using the material

properties present during the last time step 3, while the last subscript Tmax indicates that the maximum

stress during all time steps was selected.

Substituting the maximum transformed stress for the fast fracture term in Eq. 15 and subsequently

Eq. 15 into Eq. 6, we obtain the following reliability formula for the entire component at the end of time

step 3:

n

Psv(t3)=exp{-Z-_L[ J[[[(
i= 1 q-7/" f)

O'leq,3,Tmax.)Nv3 -2 +

O'0BV3

o.Nw A/3 m_'3(Nv2-2) _Nv2 A, mV2 (NI'I-2)

leq,3 ]mvi(Nv3-2) + °leq,2 za'2 .] mt"(N"2:2i

Nv3_ 2 " Nv2_ 2 Bv 2O'OBV3 Bv3 O'0BV 2

o.Nv] At I mvl

leq,I ]Nv,-2 dr2] i }
Nrl-2 BI, 1O'0BVI

+

(16)



Comparingthe reliability Eqs. 9, 14, and 16at the end of the first three time steps,a clear pattern
emerges.This patternisusedfor codingpurposes.It canbeseenfrom thesefunctionsthat thetransient
reliability equation,when taking into accountthe changein material response,is an ever-expanding
function,which addsnestedtermsasmore timestepsareconsidered.By inductiveargumentthenfor k

time steps

n

psv(tk)=exp{_ y_ Vi[ j[...[ [ (_leq,k,Tmax

i=l 4n" U O'0eVk

N_ At k mv_(N__2 ) t-v N17 At .......
.......... '-" leq,j '-_" j "r'l"(N_J-2)

_leq,k ]kmvs(Nvk-2) + ]j -I"
) Nvk-2 -I" Ni_i-2 Bv k N_)-2

°'0 B r,k CroBvj Bvj

r'r Nvt All ravl

.... -'1- Vleq'l ]1N,,,-2 df_]i }
Nvt-2

CrOBVl Bvi

(17)

where k is the last time step, j=k-1, i=k-2, and so on. This is why the derivation for the inert strength

and reliability functions was done in a gradual manner by considering each time step separately, rather

than attempting to derive a general expression for an arbitrary k th time step.

It is apparent from Eq. 17 that the transient reliability is dependent on the load and

thermal/environmental history. The dependence on the thermal/environmental load history comes from

the sequential order of the exponential term mvk(Nvj-2)/mvj(Nvk-2). When the material parameters m and

N remain constant with time (temperature and environment do not vary with time), then the exponential

terms become equal to 1. Under such circumstances the transient reliability becomes independent of

both load and thermal/environmental history. For materials like ceramics where little or no plasticity

takes place, load history independence when the material properties do not vary with time is anticipated.

In many engineering applications, structural components are subjected to repeated block loading. Fig.

1 shows a schematic diagram of such a loading history where a component is subjected to Z number of

repeated load blocks. Such repeated block loading and its effect on damaging the ceramic structural

component can be incorporated into the transient reliability analysis.

Eq. 17 is the general formulation for obtaining the transient reliability of components subjected to

varying thermomechanical loading. However because this equation is numerically intensive when many

time steps are involved, it is desirable to take advantage of the repeated nature of block loading to

develop a simpler and numerically less demanding equation. In general, as was stated earlier, the

transient reliability is load and temperature/environment dependent. However, for cases when the

reliability dependence on thermal/environmental loading is weak or nonexistent (such as when the

temperature and environment do not vary significantly with time) then Eq. 17 simplifies to the following

formulation for a component subjected to Z similar load blocks:

Psv(t,)=exp{-_--V-L[ j[... [ [(Crs'q'k'r max) N"-2 +
i= I 472" _ O'OBVk

,,,t;, (Nvi-2)

, N_ ZAtk mt_(Ni,)_2) Nr) ZAtj -l',_uvx 2-}° leq,j
_eq,k ]k ;"'iiNi';-21+ ]j

N_7¢-2 Bvk NvJ -2O'OB_ CrOB0 B 0

0 "NVI ZAll mvl
leq,l

...4 Nv,-2 ]I'Vv'±Z dQ]i }
Crottvl Bvi

+

(18)



The reason Eq. 17 collapses to Eq. 18 when the reliability is assumed or approximated to be load and

temperature independent, is that all Z similar time steps can be joined together to form one large time

step with duration ZAt_ where i represents a given time step within a load block. By performing this task

for all time steps, Eq. 17 can directly be simplified to Eq. 18. It is only necessary to scan one load block

when using Eq. 18 to predict the transient reliability for a component subjected to many load blocks.

Again Eq. 18 should be used under the assumption that the reliability is load and thermal/environmental

history independent or if the user is interested in a quick first approximation for the reliability.

Load

A

Load block 1

..... _ _ Time

load block Z

Fig. 1: Schematic diagram of repeated block loading. Number of repeated blocks = Z.

At this point a brief discussion regarding the variability of the Weibull modulus is in order. The

assumption that the Weibuil modulus can vary with time and temperature is reasonable given that no

new flaws are being generated, and that only reversible changes in the physics of crack growth occur.
Allowing for a variable Weibull modulus is useful for materials that show R-curve behavior as a function

of temperature. R-curve behavior can be strongly temperature dependent, and just as importantly, be

modeled as reversible under certain circumstances. Transformation toughened materials show

temperature dependent (and reversible) R-curve behavior through changes in the materials crystalline

structure with temperature. Mechanically toughened materials show R-curve behavior through grain

bridging near crack tips. CARES/Life as described herein models Weibull modulus variability in a

phenomenological manner. This means, for example, that CARES/Life does not explicitly account for

progressive R-curve degradation from cyclic loading for mechanically toughed materials. Therefore, it

is important to ascertain if changing Weibull modulus is due to reversible or irreversible changes in the

material. An example of an irreversible change is high temperature corrosion, where new flaw

generation on the material surface may result (also oxidation, erosion, and impact damage are

irreversible processes). In the example problem shown later, the silicon carbide (SIC) material shows a

change in Weibull modulus with temperature, which is possibly associated with flaw healing and/or new

flaw generation (an irreversible process). Since the temperature gradient for the example component

changes very little over time, the Weibull modulus consequently does not vary over time for a given



location in the componentbody. Hence, use of the temperature dependent Weibull parameters is

appropriate in this case (because it is not modeled as a reversible quantity). Had the thermal profile

significantly varied over the loading cycle, then using a strictly temperature varying Weibull modulus

would likely not be appropriate.

In a study conducted by Andrews et al. [22], NT 551 diesel exhaust ceramic valves were tested

under fast fracture conditions at room temperature. Two sets of valves were examined. The first set

contained 25 as-received (pristine) valves. Of these 25 valves, 15 were machined transverse to the axis

of syrnmetry while 10 were machined longitudinally. The dominant mode of failure for the transversely

machined valves was surface-induced from machining damage, while the dominant mode of failure for

the longitudinally machined valves was volume induced from compositional inhomogeneities. The

uncensored Weibull modulus for the transversely machined valves was 8.3, while that for the

longitudinally machined valves was 15.3. The second set contained 15 engine-tested valves which were

loaded to failure in order to examine their retained strength. These valves consisted of 7 longitudinally

machined valves and 8 transversely machined valves. The transversely machined valves had been engine

tested for 1000 hours while the longitudinally machined valves had been engine tested for 166 hours.

The dominant mode of failure for both valve-machining orientations was found to be volume induced.

The uncensored retained strength Weibull modulus of the engine tested transversely machined valves

was 3.9, while that for the longitudinally machined valves was 6.9.

As stated by Andrews et al [22], the results of the ffactographic analysis stated above indicates

that the mode of failure for the longitudinally machined valves remained the same while the mode of

failure changed from surface to volume from the transversely machined valves. In addition, more than 50

% reduction in the uncensored Weibull modulus between the as received and the engine-tested valves

for both machining conditions transpired. These results indicate that under transient loading not only can

the Weibull modulus vary with time, but also the mode of failure itself. The change in the Weibull

modulus may be a result of the changing flaw population (as time elapses) and/or mode of failure.

With the methodology developed herein, it is possible to model the Weibull modulus as an

irreversible material property that varies with time and/or temperature. For example, the Weibull

modulus can be modeled as a monotonically increasing (or decreasing) function with time, cyclic

frequency, or temperature.

All the derivations shown above were performed based on the assumption that volume flaws control

failure. When surface flaws dominate the failure process, similar equations integrated over the surface

area are used to compute the transient reliability.

Transient Reliability Without SCG: In the case where a component is manufactured using a material

resistant to SCG and thus does not degrade with time, the transient reliability formulation becomes

much simpler. Since the inherent flaws do not grow with time, we simply need to track the applied stress

history and compute the corresponding failure probability as a function of time.

This analysis is identical to the fast-fracture analysis with the exception that it has to be done, as

many times as there are time steps. Hence, a given stress history is broken into short time steps during

which the stress, temperature, and environment are assumed constant. The reliability, Psv (tj), is then

calculated at the end of each time step, j, using the following Eq.:



Psv(tj)=exp- . ( Bvj)'Vi
i=1 4_" _Crov, j )

(19)

where (_leq,i)i is the applied effective stress in the ith element during the jth time interval, while the

parameters (k_vj)_, (aovj)_, and (mvj)_ represent the material properties for the same element and time

interval.

It is apparent from Eq. 19 that the reliability increases as the applied stress decreases. While this is

true for instantaneous fast fracture loading, prudence should be exercised when applying that equation

to time dependent loading when no damage occurs. For example, if a given component is subjected to

decreased loading, then Eq. 19 will numerically predict increased reliability for that component as time

elapses. However, a component's reliability cannot improve with time. Hence, for cases where the

loading eases at a given time step j+l (the computed reliability increases) the reliability is set equal to

that at the previous time step. In other words decreased loading does not result in increased reliability

but keeps it constant. In the case of repeated block loading when the material does not degrade with

time, the transient reliability analysis needs to be conducted for only one load block. Thisis because the

reliability vs. time curves are identical for all load blocks since no damage takes place.

Numerical Example

To demonstrate the methodology described above, an example involving a ceramic exhaust valve was

selected. The design and strength evaluation of this ceramic valve, which is to be used in heavy duty diesel

engines, was conducted at Oak Ridge National Laboratory by Corum et al. [17] as part of a Cooperative

Research and Development Agreement (CRADA) between Detroit Diesel Corporation and Lockheed Martin

Energy Systems, Inc., on behalf of the US Department of Energy. The motivation for that project was that the

replacement of the metal exhaust valves with ceramic valves would prolong valve life and permit higher

operating temperatures [l 7]. In this example, we obtained the final valve design geometry and applied loading

during a typical engine cycle from Corum in the form of ANSYS input files and fi'om reference [17].

The valves were made of Norton SiALON NT-451 material. Static and fatigue tests were conducted only at

room temperature since for this material the strength drops only by 8% going from room temperature to 704

°C (1300 °F), the approximate mean operating temperature of the valve head [17].

Since the valve is subjected to repeated loading for many cycles, cyclic fatigue is expected to be the

actual dominant mode for delayed failure. However, in this paper the valve was used to demonstrate a

transient reliability analysis with SCG as the dominant failure mode. Fig. 2 represents one pressure cycle

applied to the valve face. The repeated nature of pressure cycling applied to the valve face is used in this

example to demonstrate the block loading capability described previously in Eq. 18.

Since reference [17] did not include SCG data for NT451, a different valve material was assumed for

the purpose of this example. The material selected is a sintered alpha silicon carbide (SASC), which was

tested by Jadaan [18] and shelleman [19]. Table 1 contains a summary of the Weibull and SCG

parameters for this material at two temperatures. These parameters were used to compute the reliability

for the valve in this paper.

The actual mean thermal profile within the valve during a combustion cycle was altered to

correspond to the SASC material used in this example. This valve's temperature distribution was

hypothetically increased in order to get the material into the temperature range where SCG takes place.



Therefore, in this example only the valve geometry and loading history were kept authentic as reported

in reference [17], while the material and thermal profile were altered.
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Fig. 2: Pressure variation applied to the face of a ceramic valve during a typical engine combustion cycle.

Table 1" SASC fast fracture and SCG material properties.

Temp(°C)

25

Weibull

modulus

(m)
14.4

Scale parameter

(_ov)

(M a.mm
300

Average

strength (MPa)

232

SCG

exponent
N

SCG parameter
B

(MPa:.sec)

1200 9.6 378 245 20 4336

1300 6.5 721 248 20 4074

The loading history applied to the valve during a combustion cycle was obtained from reference [l 7].

Fig. 2 shows the pressure variation as a function of time during a typical combustion cycle. The pressure

is applied to the valve's face and other exposed surfaces within the cylinder. The maximum attained

pressure during the combustion cycle was estimated to be 15.85 MPa (2300 psi) [17]. A 445 N (100 lb)

force due to spring pre-load is applied to the valve stem when it is in the open position. At the moment

the valve closes an impact force of 1335 N (300 lb) is applied to the valve stem. In addition, thermal

stresses due to the temperature distribution in the valve are superposed to the mechanical stresses.

Fig. 3 shows the assumed mean thermal profile in the valve. Steady-state thermal analysis using

ANSYS FEA code was conducted to compute these temperatures. This figure shows that the

temperature is maximum near the valve face and decays towards the valve seat and stem.

The transient reliability analysis based on the methodology described above was conducted by

dividing the load history into 29 time steps, during each the load was assumed constant. The loads



correspondingto these time steps were modeled into ANSYS FEA code, which yielded the stress results

for these 29 time steps (stress history). Fig. 4 highlights the first principal thermomechanical stress

distribution in the valve at the moment of maximum applied pressure (most critical point of the load

history). From the figure it is apparent that the maximum stress location is at the valve radius, which is

in agreement with the FEA results ofCorum et al. [17]. Initially the failure probabilities were computed

using these stresses (Fig. 4), which correspond to the actual loading as shown in Fig. 2. This stress state

resulted in very low failure probabilities due to the high material strength compared to the actual applied

loading. In order to boost the failure probabilities for this example the valve stresses were increased by

20%. Hence, in this example the failure probabilities were computed by increasing the stress distribution

shown in Fig. 4 by 20%.

The valve's stress history and other relevant terms (temperature, volume, material properties, element

number, etc.) were subsequently read into CARES/Life. The failure probability as a function of time

(number of cycles converted to time since 1 cycle = 0.0315 seconds) was then computed using the

transient reliability analysis described previously. Fig. 5 shows a risk of rupture plot for the valve. Fig. 6

shows the transient reliability curve as a function of time (load cycles). As can be seen from that figure,

the probability of failure increases as time elapses.

A static reliability analysis using the maximum load level (load step 6) during the load cycle was

performed and compared to the transient reliability analysis based on the actual loading. Fig. 6 contains

the results of this analysis. As can be seen from this figure, the static loading at the maximum level

yielded significantly higher failure probabilities (more conservative) compared to the transient loading

case. For example after 1 million seconds, the failure probability based on transient loading analysis is

17.8% compared to 30.7% based on maximum static loading analysis. This means that for the valve

example, assuming static loading at the maximum load level for 1 million seconds, almost doubles the

failure probability based on the actual transient loading for 1 million seconds. These results, showing

higher failure probabilities for the static loading compared to the transient loading, make sense since the

valve is not even loaded for some time during each cycle.

Transient analysis can be time consuming since it involves numerically intensive computations.

However, depending on the structure and loading, making the assumption that static reliability analysis

at the maximum load level can produce close results using the actual loading is not always accurate.

Such static analysis can lead to over-designed structures. It is up to the engineer to decide whether a

transient analysis is worth performing for the sake of achieving a more optimum design.

Fig. 3: Mean thermal profile in the ceramic valve. Temperature in °C.



Fig.4: Firstprincipalstressdistributionin thevalveat themomentof maximumappliedpressure.Stressin
MPa.
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Fig. 5: Risk of rupture map for the ceramic valve.
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Fig. 6: Transient and static Probability of failure as a function of time for the ceramic valve.

Conclusions

A methodology for computing the transient reliability in ceramic components subjected to fluctuating

thermomechanical loading was developed. For this effort it is assumed that delayed failure is controlled

by the SCG failure mechanism. In this methodology varying material response, whether due to



temperatureor environmental changes, can be taken into account. Repeated Block loading was also

embedded into the analysis. The theory advanced in this paper represents a more generalized

f0!'mulation of that proposed by Ziegler [1.2] since it incorporates a variable Weibull modulus. The fact
that the transient reliability Eq.s shown in this paper were derived in a different manner as those derived

by Zio_t fundamentally concur with each other, adds more confidence in the accuracy of the

methodology proposed by both parties. This methodology was programmed into NASA's CARES/Life

code. An example demonstra!ing the viability of the analysis was presented. From this example it was

demonstrated that substantial differences between the reliability assuming constant maximum loading

and that based on actual transient loading exist. Designing based on static (constant) loading at the

maximum level can lead to conservative but over-designed components.
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